
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7320--12-9359

Approved for public release; distribution is unlimited.

Environmental Measurements
Path Planner (EMPath)
User’s Manual

Kevin D. Heaney

RicHaRD L. campbeLL

RicHaRD H. StRoop

Ocean Acoustical Services and Instrumentation Systems, Inc.
Lexington, Massachusetts

Lucy F. SmeDStaD

Ocean Dynamics and Prediction Branch
Oceanography Division

GeRmana peGGion

University of New Orleans
New Orleans, Louisiana

June 1, 2012

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Environmental Measurements Path Planner (EMPath) User’s Manual

Kevin D. Heaney,* Richard L. Campbell,* Richard H. Stroop,*
Lucy F. Smedstad, and Germana Peggion†

Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004 NRL/MR/7320--12-9359

Approved for public release; distribution is unlimited.

Unclassified
Unlimited

Unclassified
Unlimited

Unclassified
Unlimited

19

Lucy Smedstad

(228) 688-5365

Gliders
Glider sampling

 A suite of sensors in an oceanographic area of interest may be optimized with the use of a Genetic Algorithm. The purpose of the Environmental
Measurements Path Planner (EMPath) is to use and execute a genetic algorithm to generate optimal search plans for a suite of sensors based upon
constituent cost-functions (CCF) contained in an input netcdf file. EMPath has a built-in to pre-processor for environmental ocean model data to
determine the largest area of model forecast uncertainty for the input file. The User’s Manual discusses all possible options for the EMPath as well
as required directory setups.

01-06-2012 Memorandum Report

Space & Naval Warfare Systems Command
2451 Crystal Drive
Arlington, VA 22245-5200

73-5091-12-5

SPAWAR

Genetic algorithm
Ocean modeling

0603207N

*Ocean Acoustic Services and Instrumentation Systems (OASIS), Inc., 5 Militia Drive, Lexington, MA 02421-4706
†University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148

Unclassified
Unlimited

NRL/MR/7320—12-9359 EMPath Users Manual

1

Environmental Measurements Path

Planner (EMPath) Users Manual

Purpose

The purpose of the Environmental Measurements Path Planner (EMPath) is to

generate optimal search plans for a suite of sensors based upon constituent

cost-functions (CCF) contained in an input netcdf file. There is a primary

assumption, that the sensors are related to each other in function. Otherwise

EMPath should be run separately for each sensor. EMPath performs two

primary functions [Heaney et. al. 2007]:

1.) platform search generation

2.) genetic algorithm (GA) optimization

The CCF file contains any number of user generated cost functions either as

2D static functions: (lon,lat) or as 3D dynamic functions: (lon,lat,time).

EMPath has been tested as part of the Glider Observation Strategies (GOST)

Project [Smedstad et al, 2012].

Usage

EMPath is controlled by an input.prm text file and requires CCFs and

bathymetry as the main input files (either in separate or the same netcdf file).

The datacx code (Appendix 2) is available from the default distribution to

create a set of CCFs based upon the ocean spatial and temporal variability in

temperature and salinity from the NRL Relocatable Nowcast/Forecast System

(RELO NCOM) [Rowley, 2010]. Averages are taken over the run and over the

depths.

Compilation instructions for EMPath and datacx are found in Appendix 3.

EMPath can be run from the command line or a unix-shell with the following

syntax:

$path/EMPath --option1 value –option2 –option2 value2 …-option{n} value{n}

where $path is the path to the directory where the executable EMPath resides.

Command line options supersede input.prm values.

Manuscript approved September 26, 2011.

NRL/MR/7320—12-9359 EMPath Users Manual

2

EMPath uses two sub-directories below the execution directory. The ‘data’

directory is used to store individual run scores as well as the best and the

output kml. The ‘persistent’ directory is where the morphology is stored once

executed (and read from if it exists) and where the Cweight vector and

Cords_initial.txt file are stored for starting the search with a pre-set parameter

list for the platform.

Input Files

EMPath uses a set of required and a set of optional input files. The options

can be defined in these files or from the command line.

Parameter hierarchy is: CCF netcdf file, input.prm, command line, with the

latter over-writing the former. In particular, CCF weights are generally

defined as 1 in the netcdf file and can be overwritten in the input.prm file.

Numbers of vehicles, glider speed, morphology computation time, etc. can be

adjusted from the command line, overwriting values in the input.prm file.

input.prm

The primary control file for an EMPath run is the input.prm file. This file

contains parameters and filenames for the EMPath run. It is beneficial to put

inputs here so that they are persistent and can be given to others to repeat

results. It must reside in the directory from which the execution occurs. The

following commands can be placed in the input.prm file:

(Those marked with an * are required)

* filename – the full path of the netCDF CCF file to read for analysis

* bathy – the full path of the bathy file to keep platforms from running into

land

* Bathy_Scale_Factor – EMPath expects bathymetry in the bathy.nc file to be

positive down. The Bathy_Scale_Factor can be set to -1 to invert the

bathymetry. If more than 20% of a vehicles positions have run aground, a

warning will be presented to the user, indicating that Bathy_Scale_Factor

should be used.

runs – sets how many times to run the GA on with current settings (all of the

output is saved, but do not use a set seed or all of the runs will be identical)

[defaults to 1]

individuals – defines how many random permutations are in each generation

(this is how to add more initial genetic material) [defaults to 200]

NRL/MR/7320—12-9359 EMPath Users Manual

3

generations – defines how many iterations to run for one genetic evaluation

(this is how many times the solution mutates before settling on a final answer)

[defaults to 80]

PLATFORMS:

gliders – defines how many moving gliders to add to the search

[defaults to 2]

moorings – defines the number of stationary moorings to search with

[defaults to 1]

drifters – defines the number of drifting surveys [defaults to 0]

airXBTs – defines the number of airXBT surveys [defaults to 0]

shipXBT – defines the number of shipXBT surveys [defaults to 1]

glider_depth – defines maximum depth of gliders (this is given in the cost

function NetCDF file but can be changed here if desired) [defaults to 400]

glider_speed – defines horizontal speed of gliders in meters per second (this

is given in the cost function NetCDF file but can be changed here if desired)

[defaults to 0.4 m/s]

shipXBT_speed – defines speed of shipXBT [defaults to 1.25 m/s]

hours_to_search_over – total time to run the search for [defaults to

time*DeltaTime (all of the time available) from the input NC file]. This must

be set to a shorter than run time if not all model run fields are used. (See

Appendix 2).

hours_between_glider_turns – how often a glider turns [defaults to 12 hours]

hours_between_shipXBT_turns – how often a ship turns [defaults to 12

hours]

degrees_allowed_between_platforms – distance potential in latitude and

longitude degrees (keeps platforms from being too close to each other)

[defaults to .5 degrees and will not go below .1 degrees]

hours_allowed_before_resampling – time potential in hours (keeps

platforms from searching the same space within a certain amount of time)

[defaults to 24 hours and will not go below .1 hours]

NRL/MR/7320—12-9359 EMPath Users Manual

4

Water_Current_Scale_Factor – scales how strong the currents are [defaults

to 1]

WaterSpace – set to 1 to exclude predefined areas of the water from the

search, set to 0 otherwise [defaults to 0]

lat_min_bound – defines the minimum latitude to allow platforms in (this only

needs to be set to shrink the search zone from all that is included in the cost

function NetCDF file) [defaults to lat_min]

lat_max_bound – defines the maximum latitude to allow platforms in (this

only needs to be set to shrink the search zone from all that is included in the

cost function NetCDF file) [defaults to lat_max]

lon_min_bound – defines the minimum longitude to allow platforms in (this

only needs to be set to shrink the search zone from all that is included in the

cost function NetCDF file) [defaults to lon_min]

lon_max_bound – defines the maximum longitude to allow platforms in (this

only needs to be set to shrink the search zone from all that is included in the

cost function NetCDF file) [defaults to lon_max]

OpArea – permits the definition of a polygon operational area where

platforms are permitted to search. This can be specified by any number of

points, but must be convex, defined in an anti-clockwise order. The algorithm

is most efficient if the 2nd angle is the smallest. The syntax is for a single line

with a single space following the command OpArea, then comma delimited

lon/lat pairs. {OpArea N,lon1,lat1,lon2,lat2,…,lonN,latN}.An example for the

Mediterranean is:

OpArea 4,15.3658,37.7221,15.1620,36.3715,16.9,36.45,16.9,37.4

[Cost Function Name] – putting the name of a cost function and then a

number will set the weight of that cost function to that number (generally

between 0 and 1) [Cost Functions default to a weight of 1]

Comments are added to the ‘input.prm’ file by starting the line with a pound

symbol and a space “# ”.

NRL/MR/7320—12-9359 EMPath Users Manual

5

CCF .nc file

The NetCDF files should include:

 Dimensions: lon, lat, dynamicfunc, staticfunc, WCurrents, time, where

o dynamicfunc is the number of functions containing 4 variables (time,

lat, lon, depth)

o staticfunc is the number of variables containing 3 variables (lat, lon,

depth)

o WCurrents is the number of water currents, this should be 2 (North-

South, East-West).

 Variables: dynamicfun, staticfun, watercurrents, lat, lon, time

 global variables: GAfun_num, TotalTime, DeltaTime, Glider_Depth,

Glider_Speed}.

o GAfun_num is the number of cost functions.

o TotalTime is the number of hours the file covers,

o DeltaTime is the number of hours between each step.

o Glider_Depth is how far the glider dives before surfacing, and the

o Glider_Speed is the horizontal speed of the glider. “

An example header file from an nc file is given in Appendix 1. There are two

types of cost function routines: dynamicfunc and staticfunc. The difference

between them is the inclusion of a time index in dynamicfunc. The CF file

requires the global variables {GAfun_num, TotalTime, DeltaTime,

Glider_Depth, Glider_Speed}. Where:

GAfun_num - number of cost functions

TotalTime – number of hours in the CF functions (hrs)

DeltaTime – hours between each time index (hrs)

Glider_Depth – maximum depth extent of the dives (m)

Glider_Speed – horizontal speed of the gliders (m/s)

The names of the individual cost functions are defined in the global

attributes. The Global attributes are also where the names of the CCF in

dynamicfun and staticfun are defined. A matrix is either dynamic or static

based on if there is a time dimension. The names must be GAfun_id# where #

starts at 1 and goes until the end of the cost functions. Their contents must be

in order and separated by colons. The Information must be “Name :

type_of_cost_function:which_matrix_it_is_in : index_in_the_matrix : weight :

a_meaningless_string_to_end_it”. The Name can be anything and is just used

to label the cost function. The type of cost function can be either cfun_LineAvg

NRL/MR/7320—12-9359 EMPath Users Manual

6

or cfun_LineStd based on whether the points on the platform path are to be

averaged or the standard deviation found. The indices should start at 0 and go

through the number of cost functions existing for the matrix. The weight will

generally be 1, but may be changed depending on cost function importance.

Making the weight 0 will cause it to not be evaluated and making it 2 will

cause it to have twice the affect of every other cost function. The meaningless

string just acts as a way to end the search and makes sure that all valuable

information was found.

Bathy.nc file

The full path name of the bathy file must be in "input.prm" on a line starting

with 'bathy' (the bathymetry must match or include the area defined by the

cost functions). The bathymetry matrix variable must be titled ‘bathy’, ‘Bathy’,

or ‘grid_water_dep’ and associating ‘lat’ and ‘lon’ variables and dimensions

must be present. Using ETOPO1_Bed_g_gmt4.grd for general bathymetry will

also work if it exists in the same folder as the program.

For RELO NCOM domains bathy.nc is made from

$RELO/bin/make_depth_nc.xc grid_1.nc bathy.nc

Command Line Options:

Here are some commands that can be run from the command line for ease of

use and added functionality. Simply type the command followed by the

desired number after it. Multiple commands may be used.

individuals, generations, gliders, moorings, drifters, airXBT, shipXBT,

glider_speed, shipXBT_speed – can all be updated here but should really be

set in the "input.prm" file

EMPath runs can be controlled from the command line via the following

control terms. These command line run options are not input parameters and

are not present in the input.prm file.

seed – this sets the seed for the current run (the same seed will return the

same output)

runs – sets how many times to run the genetic algorithm on with the current

settings (all of the output is saved, but do not use a set seed or all of the runs

will be identical)

morph – runs the morphology to set up CWeights and the environmental

picture used in plotting (if the cost functions or the input files are changed,

then this should be used!)

NRL/MR/7320—12-9359 EMPath Users Manual

7

morph_hours – changes the resolution of the morphology run (should be

between 1 and the total time) . Usually morph_hours is set to 3 in the

command line to permit a 3 hour glider trace. Longer glider traces have more

spatial smoothing.

morph_depth – sets how deep the bathymetry must be for the search to be in

bounds within morph in meters (set to 0 for land to see most platforms and set

to glider depth to see where gliders can go)

setOne – uses information in "One_Indv.txt" to add a best individual into the

genetic material for the evaluation

setCords – uses information in “Cords_initial.txt” to define where the

platforms must start (effectively only searching bearings)

Initial Coordinates

Adding ‘setCords’ to the command line allows for fixed initial positions for

multiple platforms. Bearings may be set for gliders and ships. The text file

‘Cords_initial’ that is inside of the ‘persistent’ folder must be edited in order to

circumvent the global genetic algorithm search. The numbers of platforms to

be changed must be determined as well as the order of arrival. The order of

platforms is Moorings, Drifters, AirXBTs, Gliders, and ShipXBTs. For example,

1 mooring, 2 drifters, 1 glider, and 2 shipXBTs, allows for the editing of 6

platforms. The first line of the ‘Cords_initial’ file would edit the mooring and

the second line would edit the first drifter. To skip the editing of the second

drifter, (or the third platform), write -99 on the third line. Upon continuing, the

fourth line would edit the glider, and the fifth line would edit the first shipXBT.

After editing, if for example, the last shipXBT does not need editing, stop

instead of writing -99 for all of the last platforms. When the file ends it assumes

no changes on any remaining platforms.

It is assumed that the platform time 0 corresponds to model analysis time. The

values are specified one line per vehicle and in order of lon, lat, initial

heading, turn, turn. If a value is specified by the user, EMPath will not search

over that variable. The GA will search for all parameters that are not

specified.

The format fort the Cords_initial.txt is a single line for each vehicle, with space

separated floating point values.

Example:

lon_glider1 lat_glider1 initial heading turn1 turn2

lon_glider2 lat_glider2 initial heading turn1 turn2

-99

NRL/MR/7320—12-9359 EMPath Users Manual

8

lon_glider4 lat_glider4

This defines the longitudes/latitudes of gliders 1,2, and 4 and the heading and

first two turns of vehicle 1 and 2.

When an input of -99 is used, EMPath will search for all parameters defining

that platform (lon, lat, heading, turn1, turn2 …). Start by adding the latitude

followed by a space and then the longitude, both in degrees and decimal

degrees. Accuracy is flexible regarding decimals after the degree, but the

degree minute second format is not allowed. Bearings may be added to lines

that corresponding with gliders and shipXBTs. These lines contain initial

latitude, initial longitude, initial bearing, and then how many degrees to add

or subtract from the last bearing for as many turns as the platform takes. If the

platform only takes 2 turns, then there could be up to 5 initial inputs. If a

bearing is not added EMPath does the initial bearing calculation. The xy

space will be searched for an initial bearing of 0-360⁰ followed by turns of no

more than 30⁰.

However if the whole path of the platform is described, it will not be allowed

to evolve at all and will simply be added to the score of the other platforms.

The most common application of being able to set bearings would be to just

set the latitude, longitude and initial bearing for the platform and then let the

genetic algorithm solve the best path.

Adding Genetic Material

Adding ‘setOne’ to the command line defines one genome or path for the

genetic algorithm to evaluate. This will then use the path to reproduce with

other genomes and mutate into possibly better solutions. This can be useful if

a long run exists and a good path is known, but extension of the generations

or populations is desired. Path information is available from a previous run in

the respective CSV file.

You must give the ‘setOne’ input file all of the path information, such as

starting location and bearings. Failing to define everything will leave a

partially empty genome, which will evaluate to zero and be useless. The text

file ‘One_Indv’ that is inside of the ‘persistent’ folder must be edited. The

number and order of arrival of the platforms must be known. The order of

platforms is Moorings, Drifters, AirXBTs, Gliders, and ShipXBTs. Each line in

the text file corresponds to one platform. Everything takes an initial latitude

and longitude. The gliders and shipXBTs take initial bearings, and bearing

changes in addition, both in degrees. Separate everything with spaces, and

leave nothing out. Bearing changes to add are based on the

hours_to_search_over divided by hours_between_glider_turns, and similar

math for the shipXBTS. Another alternative is to run the genetic algorithm

once and look at a CSV file.

NRL/MR/7320—12-9359 EMPath Users Manual

9

Water Space

Other than shrinking the outer bounds of latitude and longitude in the

‘input.prm’ file, boxes or circles can be set up for the genetic algorithm to

avoid. These are called water spaces, and are turned on by adding the line

‘WaterSpace 1’ anywhere in the ‘input.prm’ file. The water spaces are defined

in the text file ‘rshapes’ in the ‘persistent’ folder. Other comments may be

written in this file as it does not read everything, but rather looks for words in

the right order. As long as the line starts with the shape and continues in the

right format it will be read. Current comments in the file give instructions as

well. The formatting for the water spaces is:

shape:latitude,longitude,radius,start_time,end_time,weight;

Pay close attention to the delimiters. A colon follows the shape, and then all of

the information is separated by comas with no spaces, and everything ends

with a semi-colon. The shapes can be [circle square exponent gaussian

linear]. The circle and square shape should be obvious. The exponent,

gaussian and linear shapes are circles that fall off at an exponential, gaussian

and linear rate as they approach the center. So the center of all the shapes is

the worst place for a platform but it would be allowed at the edge. Circle and

square would not allow the platforms anywhere inside of them. The start_time

and end_time allow for the creation of shapes that move in time. The same

shape may be created at different times in the new places, but it would work.

Weight indicates how important that shape is to the genetic algorithm. A

weight of 1 would make it as important as the other cost functions, but it can

be made more or less important based on what the shape actually represents.

Output
EMPath product files are stored in ‘persistent’ and ‘data’ directories.

The files in the ‘data’ directory are listed below.

‘errors.txt’ – outputs any errors that the GA encountered during the run

instead of putting those errors on the screen (should be empty).

‘output.prm’ – describes the run so users can see what was input to create

the data they are viewing. This can be useful if the command line was used to

change things instead of inputting everything in the ‘input.prm’ file.

NRL/MR/7320—12-9359 EMPath Users Manual

10

‘GA_Run#.csv’ – This is a comma separated variable file that contains all of

the details of the best path for a full run. Use a spreadsheet program to read it

neatly formatted in a table. It has the longitude, latitude and current bearing

for every platform at every time. Platforms that have no need for bearing just

have a 0 placeholder. The last bearing point of a glider’s path is also 0

because it is no longer going anywhere and therefore has no bearing.

‘scores#.dat’ – shows the generational data for each run number. Zero

scores usually mean that the glider ran aground. The values of scores are

dimensionless and are relative for each run’s cost functions, there is no

standard scale.

‘#_Indv.txt’ – Output genome for each run. The genome values are initial

lat/lon, heading and then turns for most vehicles. This text file can be

truncated and then used as input in SetCords.txt for a refined search.

‘output#.png’ – This is a picture of the platforms moving over the

morphology. The morphology is a normalization of the multi-dimensional cost

functions. The morphology also allows the user to see the cost functions and

where they are focusing on an area of interest.

‘output#.kml’ – This is a Google Earth file for viewing the morphology and

the platforms. It requires Google Earth to be installed on the host computer.

‘GA_Best.csv’, ‘GA_Best.kml’ – In addition to output files for each run,

the results for the run with the lowest cost function score (the best solution) is

copied into GA_Best.csv and GA_best.png.

The files in the ‘persistent’ directory are listed below.

‘morphology.txt – This text file contains the morphology matrix, for each

position (lat/lon) and each constituent cost-function. The final column of each

position is the combined cost function.

‘CWeight.txt’ – This file stores the normalization factor and the maximum

value for each constituent cost-function. These values are not dependent

upon user defined weights. They are used in subsequent runs if “spaces” are

used to add regions where platforms are prohibited. Currently all weights

are saved into one file.

‘sums.txt’ – This file stores the combined morphology. These values are

used to generate the morphology.png. The PNG file is erased each time and

if the morphology is not run, the morphology.png is regenerated using the

sums.txt.

NRL/MR/7320—12-9359 EMPath Users Manual

11

Acknowledgements

Special thanks to Clark Rowley of the Naval Research Laboratory for providing
routines to make bathymetry file from RELO NCOM grid files and to David Sitton
of Qinetiq North America for the sample netCDF file.

References

[1] Kevin D. Heaney, Glen Gawarkiewicz, Timothy F. Duda and Pierre F. J.
Lermusiaux, Non-linear Optimization of Autonomous Undersea Vehicle
Sampling Strategies for Oceanographic Data-Assimilation, Journal of Field
Robotics Special Issue on "Underwater Vehicles",(2007).

[2] Clark D. Rowley, Validation Test Report for the RELO System, NRL
Memorandum Report 7320—10-9216, (2010).

[3] Lucy F. Smedstad, Kevin D. Heaney, Germana Peggion, Charlie N.
Barron, Emanuel Coehlo, Validation Test Report for a Genetic Algorithm in the
Glider Observation STrategies (GOST 1.0) Project: Sensitivity Studies, NRL
Memorandum Report 7320—12-9361, (2012).

NRL/MR/7320—12-9359 EMPath Users Manual

12

Appendix 1 sample netCDF

attributes

netcdf ET_cfmaps_extrap_20110201 {

dimensions:

 dynamicfunc = 12 ;

 staticfunc = 12 ;

 lon = 106 ;

 WCurrents = 2 ;

 time = 35 ;

 lat = 100 ;

variables:

 float dynamicfun(dynamicfunc, time, lat, lon) ;

 dynamicfun:_FillValue = 0.f ;

 dynamicfun:units = "cost_functions" ;

 float staticfun(staticfunc, lat, lon) ;

 staticfun:_FillValue = 0.f ;

 staticfun:units = "cost_functions" ;

 float watercurrents(WCurrents, time, lat, lon) ;

 watercurrents:_FillValue = 0.f ;

 watercurrents:units = "m/s (mean over depth)" ;

 watercurrents:missing_value = 0 ;

 watercurrents:description = "mean profile V-U velocities (0-

150m)" ;

 float lat(lat) ;

 lat:units = "degrees_north" ;

 float tau(time) ;

 tau:units = "hours starting at time in filename" ;

 float lon(lon) ;

 lon:units = "degrees_east" ;

 float time(time) ;

 time:units = "day_number" ;

// global attributes:

 :title = "NETCDF File for TOFU" ;

 :author = "David Sitton" ;

 :GAfun_id0 = "Name:Operation:CostType:Index:Weight:Useless"

;

 :GAfun_num = 24 ;

 :GAfun_id1 =

"Ensemble_Spread_Temp_0m:cfun_LineAvg:dynamic:0:1.0:Useless" ;

 :GAfun_id2 =

"Ensemble_Spread_Temp_25m:cfun_LineAvg:dynamic:1:1.0:Useless" ;

NRL/MR/7320—12-9359 EMPath Users Manual

13

 :GAfun_id3 =

"Ensemble_Spread_Temp_100m:cfun_LineAvg:dynamic:2:1.0:Useless" ;

 :GAfun_id4 =

"Ensemble_Spread_Sal_0m:cfun_LineAvg:dynamic:3:1.0:Useless" ;

 :GAfun_id5 =

"Ensemble_Spread_Sal_25m:cfun_LineAvg:dynamic:4:1.0:Useless" ;

 :GAfun_id6 =

"Ensemble_Spread_Sal_100m:cfun_LineAvg:dynamic:5:1.0:Useless" ;

 :GAfun_id7 =

"Ensemble_Mean_Temp_0m:cfun_LineStd:dynamic:6:1.0:Useless" ;

 :GAfun_id8 =

"Ensemble_Mean_Temp_25m:cfun_LineStd:dynamic:7:1.0:Useless" ;

 :GAfun_id9 =

"Ensemble_Mean_Temp_100m:cfun_LineStd:dynamic:8:1.0:Useless" ;

 :GAfun_id10 =

"Ensemble_Mean_Sal_0m:cfun_LineStd:dynamic:9:1.0:Useless" ;

 :GAfun_id11 =

"Ensemble_Mean_Sal_25m:cfun_LineStd:dynamic:10:1.0:Useless" ;

 :GAfun_id12 =

"Ensemble_Mean_Sal_100m:cfun_LineStd:dynamic:11:1.0:Useless" ;

 :GAfun_id13 =

"Mean_Spread_Temp_over_time_0m:cfun_LineAvg:static:0:1.0:Useless" ;

 :GAfun_id14 =

"Mean_Spread_Temp_over_time_25m:cfun_LineAvg:static:1:1.0:Useless" ;

 :GAfun_id15 =

"Mean_Spread_Temp_over_time_100m:cfun_LineAvg:static:2:1.0:Useless" ;

 :GAfun_id16 =

"Mean_Spread_Sal_over_time_0m:cfun_LineAvg:static:3:1.0:Useless" ;

 :GAfun_id17 =

"Mean_Spread_Sal_over_time_25m:cfun_LineAvg:static:4:1.0:Useless" ;

 :GAfun_id18 =

"Mean_Spread_Sal_over_time_100m:cfun_LineAvg:static:5:1.0:Useless" ;

 :GAfun_id19 =

"H_Gradient_Temp_over_time_0m:cfun_LineAvg:static:6:1.0:Useless" ;

 :GAfun_id20 =

"H_Gradient_Temp_over_time_25m:cfun_LineAvg:static:7:1.0:Useless" ;

 :GAfun_id21 =

"H_Gradient_Temp_over_time_100m:cfun_LineAvg:static:8:1.0:Useless" ;

 :GAfun_id22 =

"H_Gradient_Sal_over_time_0m:cfun_LineAvg:static:9:1.0:Useless" ;

 :GAfun_id23 =

"H_Gradient_Sal_over_time_25m:cfun_LineAvg:static:10:1.0:Useless" ;

 :GAfun_id24 =

"H_Gradient_Sal_over_time_100m:cfun_LineAvg:static:11:1.0:Useless" ;

 :TotalTime = 99. ;

NRL/MR/7320—12-9359 EMPath Users Manual

14

 :lon_min = 14.8000001907349 ;

 :lat_max = 37.9912109375 ;

 :DeltaTime = 3. ;

 :Glider_Depth = 150. ;

 :lon_max = 17.0891056060791 ;

 :Tavg_Depth = 41.6666666666667 ;

 :Glider_Speed = 0.5 ;

 :lat_min = 36.25 ;

}

Appendix 2 datacx pre-conditioner

The purpose of datacx is to condition a set of RELO NCOM ocean forecast

fields (in netcdf format) for use as a Cost Function (CF) input file for the

EMPath (Environmental Mission Path Planner) genetic algorithm code.

Currently EMPath is a 2D mission planner for various types of platforms.

Datacx performs two functions:

1. datacx the two standard cost functions (temporal std and

spatial average) for use within EMPATH.

2. datacx computes the 3D (lon,lat,time) depth averaged velocity

fields (U(x,y,t) and V(x,y,t)).

Usage

datacx can be run from the command line or a unix-shell with the following

syntax:

$path/datacx --option1 value1 -–option2 value2…--option n value n

where $path is the path to the directory where the executable datacx resides.

Options

Input ocean forecast filenames:

--path_ncom $filepath/${runname}t%03d.nc

NRL/MR/7320—12-9359 EMPath Users Manual

15

This option directs the code to the directory and filename of the ncom

formatted files to be processed. $filepath is the directory of the files,

$runname is the defined common netcdf filename and t%03d signals to datacx

to loop through all files of the form runnamet000.nc, runnamet003.nc, etc.

Input bathymetry filenames:

--path_etop $filepath/filename.nc

This option directs the code to the directory and filename of the bathymetry

file. Bathymetry is used as a mask. If a bathymetry file is not specified, the

code computes the cost functions and water velocities where there are

acceptable values.

Bathymetry Sign

--bath_sign_multplier -1

The OASIS standard definition of bathymetry is negative downward from the

ocean surface. Some bathymetry databases have positive depths below the

sea-surface and this can be easily addressed by inputing a bathymetry

multiplier of -1.

Number of files:

--ncom_count 25

This option specifies the number of files for datacx to sweep through. [The

default is all of the files that satisfy the input filename syntax]

Frequency of files:

--ncom_step 6

This option specifies the number of frequency of NCOM files. [The default is 3

hours]

Number of hours:

--ncom_hours 72

If the mamimum number of hours is greater than the files available, datacx will

loop over the available files. Conversely, if an area analysis wanted to start at

a different time than analysis 00, earlier files could be eliminated from the

RELO NCOM directory, and datacx would grab all of the rest of the files.

EMPath will still assume that the run begins at analysis time 00.

NRL/MR/7320—12-9359 EMPath Users Manual

16

Maximum glider depth

--max_depth 1000 [defaults to 1000]

This option specifies the maximum depth of the glider dives. Specifically it

sets the zmax for the water velocity average calculation.

4D Currents

--copy_4d_currents

The 4D version of EMPath requires water currents to be specified as 4D fields.

With this option, the DATACX code is run as in the 3D case (x,y,t) but the

entire water_u and water_v matrices from the NCOM forecast are written to

the output nc file in addition to the depth averaged current.

Appendix 3 compilation

Compilation of EMPath uses the form

${CC} ${CFLAGS} -c oasis_math.c

 ${CXX} ${CXXFLAGS} -c Genetix.cpp

 ${CXX} ${CXXFLAGS} -c EMPath.cpp

 ${CXX} -o empath oasis_math.o Genetix.o EMPath.o ${LIBS}

EMPath is C++, which will vary depending on architecture. Some examples

used at the Naval Research Laboratory and Naval Oceanographic Office are

below.

On Linux64:

CC=gcc

CFLAGS= -03 –Wall -ansi

CXX = g++

CXXFLAGS = -c -O3 -Wall -fpermissive -Wno-write-strings

LIBS = -lpthread -lnetcdf_c++ -L/usr/lib64 -L/common/netcdf/gnu/4.1.2/lib

-lpng

INCPATH = -I/common/netcdf/gnu/4.1.2 /include -I.

NRL/MR/7320—12-9359 EMPath Users Manual

17

On the Cray XT5:

module swap PrgEnv-pgi PrgEnv-gnu

module load netcdf

module load hdf5

CC=cc

CFLAGS= -O3 –Wall -ansi

CXX = CC

CXXFLAGS = -c -O3

LDFLAGS =

LIBS = -L/opt/cray/xt-sysroot/default/usr/lib64 -lpng -lz

INCPATH = -I.

On the IBM P6:

CC=xlc

CFLAGS=-q64 -qrtti

CXX = /usr/vacpp/bin/xlc++

CXXFLAGS = -c -qrtti -q64

LDFLAGS = -q64 -qrtti

LIBS = -L/site/libpng-1.2.29_64/lib -L/site/zlib-1.2.3_64/lib -

L/site/netcdf64/lib -lpthread -lnetcdf_c++ -lnetcdf -lpng -lz

INCPATH = -I/site/libpng-1.2.29_64/include -I/site/zlib-1.2.3_64/include -

I/site/netcdf64/include -I.

Datacx is written in C and is compiled as follows:

On Linux 64:

gcc -O3 -Wall -L/common/netcdf/gnu/4.1.2/lib -I/common/netcdf/gnu/4.1.2

/include -o datacx datacx.c -lnetcdf -lm

On Cray XT5:

 module swap PrgEnv-pgi PrgEnv-gnu

 module load netcdf

 module load hdf5

datacx : datacx.c oasis_ncom_ops.c oasis_ncom_ops.h

 cc -O3 -o datacx datacx.c oasis_ncom_ops.c -lnetcdf -lhdf5_hl -lhdf5 -lm -lz

On IBM P6:

xlc -qrtti -q64 -I/site/netcdf64/include -L/site/netcdf64/lib -o datacx datacx.c

oasis_ncom_ops.c -lnetcdf -lm

	Blank Page
	Blank Page

